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A UNIFIED APPROACH TO ESTIMATION IN LINEAR MODELS

WITH FIXED AND MIXED EFFECTS

By

C. Radhakrishna Rao

Center for Multivariate Analysis
University of Pittsburgh

Pittsburgh, PA 15260

Abstract

)A unified approach is developed for the estimation of unknown fixed
parameters and prediction of random effects in a mixed Gauss-Markoff
linear model. It is shown that both the estimators and their mean square

errors can be exprcssed in terms of the elements of a g-inverse of a
partitioned matrix which can be set up in terms of the matrices used in
expressing the model. No assumptions are made on the ranks of the matrices
involved. The method is parallel to the one developed by the author in the
case of the fixed effects Gauss-Markoff model using a g-inverse of a
partitioned matrix (Ra 1-971, -97-2, 1973, 1985).

A new concept of generalized normal equations is introduced for the
simultaneous estimation of fixed parameters, random effects and random
error. All the results are deduced from a general lemma on an optimization
problem. This paper is self containe4 as all the algebraic results used are
stated and proved. The unified theory developed in an earlier paper (Rao,
1988) is somewhat simplified. _

Key words and phrasU: g-inverge, Gauss-Markoff model with fix , an.]
mixed eftects, IPM (inverse partitioned matrix) method, normal equations.
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1. INTRODUCTION

The Gauss-Markoff model with fixed and random effects, called the
mixed linear model, is written in the form

Y=X+U+ (1.1)

where Y is an n-vector of observations, X is a given nXm matrix, P is an m-

vector of unknown fixed parameters, U is a given nxp matrix, is a p-

vector of hypothetical random variables. We make the following

assumptions on the first and second order moments of t and S.

E(t)=Ay, E(S)=0, D(t)=F, D(S)=G, Cov(t,S)=0. (1.2)

We refer to the model (1.1) - (1.2) as the GM(M) model where M within

brackets refers to mixed effects. The corresponding model with fixed effects

only, i.e., without the term U t, will be referred to as GM(F) when a

distinction has to be made or simply as the GM model as it is usually known.

We develop a simple and a unified appproach in the general case, when

nothing is assumed about the ranks of the matrices involved, for the

estimation of the fixed parameter P and the prediction (or estimation) of the

hypothetical variables t and &, when the other parameters 'Y, F and G are

partly known or completely known. First we prove a few algebraic lemmas.

The following notations are used.

Rn "  n dimensional Euclidean real vector space.
R(Z): vector space spanned by the column vectors of the matrix Z.
p(Z): rank of the matrix Z.

Z: a matrix of maximum rank such that Z'Z ± = 0. r

Z: a g-inverse of Z, i.e., a matrix satisfying the equation Z Z Z = Z.
tr Z: sum of the diagonal elements of Z when it is a square matrix.
(A:B): the matrix obtained by adjoining the columns of the matrix B to

iiose of A.

We need the following results on g-inverses. 13tiAvt-tb 1 ctn

Av 1t i' /r1
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Lemma 1. Let Z- be a g-inverse as defined above. Then:

(i) a = Z- b is a solution of the consistent equation Za = b. (1.3)

(ii) p,(ZZ=) = P( tr(Z'Z). (1.4)

PrLo. Since Z a = b is consistent, b E R(Z), i.e., b = Zc for some c.

Then ZZ'b = ZZ'Zc = Zc = b which shows that Z'b is a solution.

Now ZZ'ZZ = ZZ', i.e., ZZ" is idempotent so that (1.4) follows.

Lemma 2. Let G be an n.n.d. (non-negative definite) matrix of order nxn,

X be an nxm matrix and

v.  01 ~(1.5)
""X 0 C 3 -C 4

be any choice of g-inverse. Then:

(i) XC 1G=XC 1 G = 0, XC 2 X=X=XC 3 X. (1.6)

(ii)GC 1 GC 1 G=GC 1 G C1 G=GC 1 GC 1 G=GC 1 G=GCiG (1.7)

(iii) X C1 X=X' C1X =0. (1.8)

(iv) tr G C1 = p(G:X) - p(X). (1.9)

PrQQ First we show that the equation

G a+Xb = GX
Xa . (1.10)

is consistent for any vectors X and p.. Let (a: ') be a row vector such that

(G X
( 0 ) = 0 =t 'G +'X' =0, aX =0

X 0
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a'G a + P'X'a =o = c'G a - o a'G =o.

The last step follows since G is an n.n.d. matrix. Then,

] Xo* 0 G X'

which establishes the consistency of (1.10). In such a case, using the g-
inverse (1.5), we find a solution of (1.10).

a=C 1 G X +  C2 X'L, =C 3 G X- C 4 X' .

Substituting & for a in the second equation of (1.10) and equating the

terms involving X and 1 on both sides we obtain

X'C 1 G =o, X'C 2 X'=X'. (I.11)

Further, the transpose of the g-inverse in (1.5) is also a g-inverse in view of

the symme try of the left hand side matrix of (1.5), and results analogous to

(1.11) hold giving

X'C 1 G = o, X' C 3 X, = X'. (1.12)

Awhich prove (1.6). Again, substituting a and for a and b in the first
equation of (1.5) and equating the terms in X on both sides, we have

G C 1 G +X C3 G =G. (1.13)

Multiplying (1.13) by G C 1 and G C1 and using (1.11) and (1.12), we get

the equalities in (1.7).

It is easy to see that

G a + Xb = XpL
X'a = 0 (1.14)

4,~

,,..
4-,,
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is a consistent equation for any p.t, so that a = C 1 X p. is a solution.
Substituting a for a in the second equation of (1.14), we find that X'C 1 X p-

=0 V X CIX--o=X'C 1 X, which proves (1.8).

Now

G x C 2{ GCI+ X GC2-XC4
P= tr '

X' 0 C 3  -C 4  XC 1 X'C2

= tr(GC 1+XC 3 ) + tr X'C 2

=trGCI+P(XC 3 ) + p(X'C 2 )

=trGC1 + p(X) + P(X') (1.15)

since XC 3 and X'C 2 are idempotent. But

G X C1  C2 G X

P = J= p(G:X) + p(X). (1.16)
X 0 r C 3  -C4 )X 0

Equating (1.15) and (1.16), we have (1.9) and Lemma 2 is proved. Now we
prove the main lemma.

Lemma 3 LetG and X be as in Lemma 2, g E R(G "X) and p E R(X').
Then

min (a G a+2 a'g)=a G a, +2a g

X'a=p (1.17)

where a* is any solution to

SG a +X b = -g
X'a = p. (1.18)

With C 1 , C 2 , C 3 , C 4 as defined in Lemma 2, one choice of the solution for
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(a, b) of (1.18) is

a* =-C 1 g + C 2 p, b, =-C 3 g - C4 p (1.19)

giving the expressions for the minimum in (1.17) as

g'a, - p'b* =-g'C1 g + g'(C 2 + C3 )p + p'C 4 p. (1.20)

Prof Let a*, b, be any solution of (1.18), and Z = X'. Then

multiplying the first equation of (1.18), with (a, b) replaced by (a*, b,), by

Z' and a we obtain

Z'Ga*+Z'g = o (1.21)

a ,G a* + a~g = - b ,p (1.22)

A general solution of X'a = p is a* + Z d where d is arbitrary. Then writing

a =a * +Z d,

a'G a + 2a'g =a G a* +2 a g+d'Z'G Zd+2d'(Z'G a,+Z'g)

aG a* +2a g+d'Z'G Z d, using (1.21)

-aGa,+2 ag =a g -b ,p, using (1.22)

which proves(1.17). The result (1.20) is obtained by substituting the

expressions (1.19) in (1.22).

Lemma 3 plays a crucial role in estimation and prediction problems in
linear models. The results are given in Section 2.

Lemma 4. If Y is an n-vector random variable with E(Y)= o and D(Y)=
Cr2 G, then an unbiased estimator of CY2 is

R'"'' "" "" "" "" "" .'' - . -"""".-'""", . .. ''"...,-.-.""..',"-"*"-- ... , ,"" '.,, ,-".%N

'JR.
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c,' Y'G "Y
,2 = (1.23)

p(G)

where G- is any inverse of G.

Proot

E(Y'G'Y) = E tr(G-YY') = j 2 tr G'G = 0 2 p(G), using (1.4).

2. FIXED EFFECTS LINEAR MODEL

The Gauss-Markoff linear model with fixed effects is

Y=XP+ S, E(S) = o, D(S) = cr 2 G (2.1)

and the associated problems are those of estimating the unknown

parameters p and j 2 and the random error S. We use the results of Lemma

3 in solving these problems. We denote

(G X C C2

= (2.2)
X C3 -C4

for any choice of the g-inverse.
4-n

2.1 BLUE of p'3

Consider a linear function a Y as an unbiased estimator of p P. Then

E(a'Y) = a'X P = p'P V P * X'a = p. (2.3)

We find a by minimizing

V(a'Y) = C2 a'G a subject to x'a =p. (2.4)

Applying Lemma 3 with g = o, the BLUE of p'P3 is
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* aY =p'C 2 Y (2.5)

with the minimum variance

- 2 a G a* = - 0-2 b *p = - 2 p'C 4 P (2.6)

using (1.20) and the expressions for a* and b* in (1.19).

2.2 Estimation (Prediction) of 8

Consider a linear function q'S of 6 and let a'Y, with E(a'Y) =o aX =

o, be its predictor. Then the mean square error of prediction is

E(q'S - a'Y) 2= E(q'F - a'F) 2

= a 2 (a'G a - 2a'Gq + q'Gq). (2.7)

Applying (1.19) with g = -Gq and p = o, the minimum of (2.7) is attained
when the predictor is

a ='Lg: qiJ q' . (2.8)
,a Y = -(Clg)'Y = q'GC 1Y=q

The minimum mean square error of prediction is, using (1.19) and (1.20),

c 2 (a ,g - b ,p + q'Gq)

0-2 (-q'GC 1Gq + q'Gq) = g 2 q'(G - GC 1 G)q. (2.9)

'.,

The results (2.8) and (2.9) which hold for any q imply that the minimum

dispersion error predictor of F is

=GC 1 Y =GC1 Y (2.10)

with
D(- p) = o 2 (G - GC 1 G) (2.11)
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2.3 Estimation of 0.2

Now

E ( )=E(GC 1 Y) = GC 1 Xp =o, by (1.6)

D( =D(GC1 Y) = 0.2GCIGC 1 G

=G2GCiG, by (1.7).

Then using Lemma 4, an unbiased estimator of U2 is

9'(GCiG)" 8=Y'C1G(GClG)-GC1Y (2.12)

with a suitable divisor. Note that Y eR(G :X), so that Y = G X + I for a

suitable X and ,L. Then

Y'C1G(GCIG)-GCIY = X'(GCIG)(GCIG)-(GCIG)X. (2.13)

Since the terms in X vanish, using (1.6). Hence, by the definition of

g-inverse, (2.13) reduces to

X'GCIGX = (.'X' + X'G) CI(X . + GX), using (1.6)

= Y'C 1Y. (2.14)

Now
E(Y'C 1 Y) = tr E(YY'C 1) = Ca2 tr(G + X P P'X')C 1

j a 2 trGCI + g 2 tr 3 'X'C'X = tr GC 1, using (1.8)

U2 tr GC 1 = C2 [p(G:X)- p(X)], using (1.9).

Then an unbiased estimator of C2 is

= Y'CIY (2.15)
p(G:X)-p(X)
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2.4 Normal equations

The expressions for the estimates of p'1, a72 and F obtained in sections
2.1 - 2 3 suggest a more direct way of obtaining them by first solving the
consistent set of equations

Gc +XP =Y
X'c =0. (2.16)

If ( &, ') is a solution of (2.6), then we have the following:

(i) The BLUE of an estimable function p'1 is p' 0.
A(ii) The minimum dispersion error predictor of 6 is -G a

(iii) An unbiased estimator of a-2 is A 2 = y, A/[p(G:X) - p(X)].

We may call (2.16) as the generalized normal equations for the simultaneous
estimation of C and 3.

A
If C. and p are obtained through a g-inverse as defined in (2.2),

then we automatically have the expressions for the precisions of the
estimates:

V(p' C) = a2 p'C4p

D( - F)= j 2 (G - GCIG).

When G -1 exists, we can write the equations (2.16) in terms of the
unknowns C and P to be estimated in the form

F + X3 =Y

X'G - F =o (2.17)

using the relationship C = G a. Thus, the equations (2.17) are the
appropriate normal equations for C and P when G exists. In such a case,
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eliminating 6 in the second equation using the first equation in (2.17), we

have

X'G- 1 XP = X'G- 1 Y (2.18)

which is the usual normal equation for P only. If is a solution of (2.18)

then from (2.17), = Y - X [ the usual residual.

The equation (2.16), however, is a more natural one which is simple to

set up without any initial computations and which does not involve any

assumptions on the ranks of the matrices involved.

2.5 Projection operator

The second normal equation of (2.16) implies that a = Z 8 where Z = X-

and 8 is arbitrary. Substituting for Ca in the first normal equation of (2.16),

XP + GZ 8 =Y (2.19)

which provides the decomposition of the observed Y as 'signal + noise' giving

estimates of X13 and 6. Note that R(GZ) and R(X) are disjoint and Y ER(G:X) -

R(GZ:X) w.p.1. Hence the decomposition (2.19) is unique. If and A is a

solution of (2.19), then an estimate of p p isp' 0 and of & is = GZ A.

Since R(X) and R(GZ) are disjoint, although R(GZ:X) may not span the
whole of Rn, there exist projection operators PX and PGZ onto R(X) and

R(GZ) in terms of which Y can be decomposed as in (2.19). Then

X X=PY and E = GZ =PGzY=(I'Px)Y.

Rao (1979) gives a detailed discussion of generalized projection operators.

3. MIXED EFFECTS LINEAR MODEL

The mixed effects linear model is of the form

"W,



Y=Xf3±U (3.1)

with

E(&) = o, E() =A y

D() =G, Cov(&, t) = o, D() =F.

We write the model in an alternative form

S= X. + UTJ + & (3.2)

where

;= X (X:UA), P Ay.

3.1 Estimation of a mixed effect

Let p'P, + q'T' be a mixed effect to be estimated. If c + a'Y is an

unbiased estimator, then

E(c+a'Y-p'p3,-q'T) = o = c = o and X *a = p.

The mean square error is

E[a'(U "0+ ) - qT, 2

= a'G a - 2a'U Fq + q'Fq

where G, = UFU'+ G. Applying Lemma 3, the optimum a is a solution of

the equation

=V



G*a+X*b = UFq
I

X*,a = p (3.3)

If

=* xCI 
C (3.4)

X, 0 C3 -C4

for any choice of the g-inverse, then the best linear estimator is a *Y

where
a* = CjUFq + C 2P (3.5)

and the mean square error is, using (1.19) and (1.20),

-a ,UFq -b p + qFq

.1(

=q'( F - rU'C 1Ur)q + PC 4 p- p'(C 2 + C 3 )U rq. (3.6)

Writing P= (P 1 'p2'

+ q Tj = p 1 + p 2 y 4 q'p =p 1  + (p 2 -qA)y + q't (3.7)

we find that the formulas (3.5) and (3.6) cover all special cases of linear

functions involving one or more of the parameters P and y and the random
variable .

3.2 Estimation of the random error

Let r'S be a linear function of the random error estimated by a'Y. The

condition of unbiasedness implies that a'X, = o. The mean square error is
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E(a'Y-r'C) 2 = a'G *a - 2a'Gr + r'Gr. (3.8)

Applying Lemma 3, the minimum of (3.8) is attained when the estimator of
- r'Sis a V where a*=r' CIGr. The minimum mean square error is using

(1.19),

r'(G-GC G )r. (3.9)

From the above expressions it follows that the minimum dispersion error
estimate of S is

= GCIY with D( 9 -6) = G - GCiG. (3.10)

3.3 Normal equations

The expressions for the estimators obtained in Sections 3.1 and 3.2
suggest the following estimation procedure. We set up the generalized
normal equations

X ' 0 0 0 (3.11)

A'U' 0 0

A A T, ^s A , Aand obtain a solutuion a , and Y. Then the estimate of "q is"a FU c

AI I I

and of & is G cc. The estimate of p I1P + P 2"Y when estimable is p1
I AU

+ P2 Y/

Denoting (X:UA) = X, and ', T the estmathe equations (3.10) can be

written as
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(G + UFU') c + X,[3 = Y

X, = 0. (3.12)
*I

If G-1 and F-1 exist, then multiplying the first equation by X G-1 and

F-1 FU'G-1 and using the second equation, we obtain the two equations

XG-1 UrI+XG 1 Xp, =XG-'Y

(F- 1 + U'G-1U)7 + U'G-1X[3, = U'G- 1Y. (3.13)

Henderson (1984) derived equations of the type (3.13) when A = o. (See also
Harville, 1976). The equations (3.12) provide estimators of 'n and 03 directly.

When G and F are not both non-singular or when G and/or F is a
complicated matrix, other methods of solving the equations (3.11) could be
explored.

The estimators of , E, [ and y obtained in Sections 3.1-3.3 involve

the matrices G and F which may not be known. In the simplest possible case

G and F may be of the form 7 2V 1 and a 2V2 respectively, where V 1 and

V2 are known and C 2 and o 2 are unknown variance components. In such

a case, Cr 2 and c 2 may have to be estimated using techniques such as

the MINQE or maximum likelihood as described in Rao and Kleffe (1988).

1t- a 2 may be substituted for the unknown values

in the expressions for the estimators of t, E, [ and y.

U...

- ~ "U.~' 4NU -,% . .V2~~~* ~* ' UIU'.
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